a2 United States Patent

US006819319B1

10y Patent No.: US 6,819,319 B1

Fenney 5) Date of Patent: Nov. 16, 2004
(54) SHADING THREE DIMENSIONAL 5,043,922 A * 8/1991 Matsumoto 345/422
COMPUTER GRAPHICS IMAGES 5,369,737 A * 11/1994 Gholizadeh et al. 345/426
5412563 A * 5/1995 Cline et al. 345/420
(75) Inventor: Simon J. Fenney, St. Albans (GB) 5,596,685 A 1/1997 Ashton
5720672 A 3/1998 Ashton
L o Lo 5754680 A * 5/1998 Sato et al. ...
(73) Assignee: hmat%lngt;lqn Tgc];lnologles Limited, 5049424 A * 9/1999 Cabral ct al. .
ertfordshire (GB) 6,061,065 A * 5/2000 Nagasawa
. 6,151,029 A * 11/2000 Shirman et al. ..
(*) Notice: Subject to any disclaimer, the term of this 6552726 B2 * 4/2003 Hurley et al. 345/426

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/486,012
(22) PCT Filed: Aug. 19, 1998
(86) PCT No.: PCT/GB98/02488

§ 371 (e)(1),
(2), (4 Date: May 15, 2000

(87) PCT Pub. No.: W099/09523
PCT Pub. Date: Feb. 25, 1999

(30) Foreign Application Priority Data
Aug. 20, 1997 (GB) cooveeeeeeveeeeeveeeseee s 9717656
(51) Int. CL7 o GO6T 15/60
(52) US. Cl ot 345/426
(58) Field of Searchc.cccocooveeiiene. 345/426, 421,
345/418, 419, 582, 583, 584, 420, 422,
382/154

(56) References Cited
U.S. PATENT DOCUMENTS

4,928,250 A * 5/1990 Greenberg et al. 345/426

r-——--—-——---‘

1 EXISTING 3D TEXTURE |

FOREIGN PATENT DOCUMENTS

EP 0 764 921 3/1996
WO WO 95/27268 10/1995

* cited by examiner

Primary Examiner—Wilson Lee

Assistant Examiner—Huedung X. Cao

(74) Antorney, Agent, or Firm—Flynn, Thiel, Boutell &
Tanis, P.C.

(7) ABSTRACT

A three dimensional textured computer graphic image is
shaded by firstly providing data which defines the computer
graphic image. Textured data is then applied to that image.
A set of surface normal vectors corresponding to the texture
data are then applied to the image and data defining at least
one light source which illuminates the image is also pro-
vided. For each pixel in the image a shading value is derived
to be applied to that pixel from the set of surface normal
vectors and the light source data.

20 Claims, 3 Drawing Sheets

PER SURFACE BUMP MAP| _~ 6
DIRECTION PARAMETERS

HARDWARE
L, AR i
27 |
|
l
8
i |"BUMP MAP* HARDWARE |
|
|
i

r——--z-’———'l

i EXISTING 3D BLENDING I
L HARDWARE |

r———--‘

4-7

U.S. Patent Nov. 16, 2004 Sheet 1 of 3 US 6,819,319 B1

;’ EXISTING 30 TEXTURE 7 [PemsurracesumPmar] -6
HARDWARE | |DIRECTION PARAMETERS

Loy

i

" 8
"BUMP MAP* HARDWARE

— - g

\

—--—;-———

{ EXISTING SD BLENDING |
L AROWARE I FI1G.1

7/

LIGHT

SURFACE NORMAL AT
PIXEL

SURFACE

COORDINATE
SYSTEM

SURFACE
FIG.2

U.S. Patent Nov. 16, 2004 Sheet 2 of 3 US 6,819,319 B1

S (ug)
v

COMBINED TRIG 90 UNIT

SIN_90 UNIT COS_80 UNIT
UB=s>U8 Ug=oU8

._L__Kﬂia)./ﬁ_lnvﬁ__'(_a}w_m ¢ [CoS_3s0UNT 18
‘ CTIPLIER

MULTIPLIER S9=>U8 + SIGN
UBxUB=>UB (top bits) UBxUB=>L!8 (top bits

K1 (U8)
v

. / 22 .
ADD ER / 20
U8+UB=>US UsxUs=>U8 (top bits)

%SEUB TRACT UNIT SIGN BIT

UB(+-) Usa> $11 y \ 2

+
[CLAMP UNIYV (0. o..z‘ss]"‘ .
S1t=> U[B %

IT]0.259] L.~ *°
UsVAw> U8

'

OUTPUT ‘ALPHA'
TO BLEND UNIT

FIG.3

p (U4)
L

U.S. Patent

Nov. 16, 2004 Sheet 3 of 3 US 6,819,319 B1

. Plan view of Bump
::/ angle hemisphere
SRt e
" PathA,

..\.

Path 8,/

Limit of X&Z
component values

US 6,819,319 B1

1

SHADING THREE DIMENSIONAL
COMPUTER GRAPHICS IMAGES

FIELD OF THE INVENTION

This invention relates to the shading of three dimensional
computer graphic images, and especially to graphic images
generated in real time.

BACKGROUND OF THE INVENTION

Many three dimensional computer graphics images are
modelled with perfectly flat or smooth surfaces. Usually
these surfaces are constructed from a plurality of small
triangles to which is applied either flat shading, or smooth
shading as described in “Transactions on Computers” [EEE-
20 (6) June 1971 pp 623 to 629 by Gouraud, H., graduated
shading, or, less frequently Phong shading from CACM
18(6)June 1975 pp 311 to 317 “Illumination for Computer
Generated Pictures”. Visual detail may be applied to these
surfaces via the application of textures. These textures are
generally two dimensional images and the process is similar
to having an image painted onto a perfectly smooth wall. It
does not model any surface roughness or any shading effects
which might arise therefrom.

In computer graphics the way in which light interacts with
the surface is referred to as shading. One of the simpler
models used for shading is known as Lambert or diffuse
shading. It is computed as a function of the direction of the
light illuminating the surface and the orientation of that
surface. The orientation is represented by a unit vector
perpendicular to the surface (a surface normal). The light
direction is also preferably assumed to be a unit vector
which points from the surface to the point of illumination. In
the case of flat shading the surface normal is considered to
be constant across the entire surface. With Gouraud shading
three surface normals defined at the vertices of each triangle
are used. The shading at the vertices of the triangles is
calculated from these normals. These shading values are
then interpolated across the entire surface. This is a satis-
factory approximation in many cases. However, it does lead
to shading problems such as mach banding and problems
with specular highlights.

Phong shading gives a superior result to this because it
interpolates the surface normally across the triangle and then
recalculates the shading at each pixel. However, both of
these per pixel operations are considered to be relatively
expensive computationally and, therefore, Gouraud shading
is therefore more commonly used.

3D computer graphics often makes use of specular shad-
ing in addition to diffuse lighting. Specular shading is the
modelling of glossy reflections of lights. In both types of
shading a common basis for the calculation of the shading to
be applied is a vector dot product raised to a power. This is
shown in equation 1 below.

((1_h)+h'_D)light'_D)normal)P

In “simulation of wrinkled surfaces” by Blinn, J. F. in
Siggaph 1978 pp 286 to 292 there is proposed the concept
of bump mapping. This uses an adaptation of texturing to
deviate surfaces normal on a pixel by pixel basis. The texture
data used to form the derivation of the normal is referred to
as the bump map.

Although the position of the surface is not actually moved
in 3D graphic space it appears rough because shading is
performed with a surface normal which moves in direction
as the surface is traversed.

10

15

20

25

30

35

40

45

50

55

60

65

2

This process is known as surface normal perturbation.
What is stored in the bump map is an amount by which the
surface normal is to deviate from its previous value. Thus,
in order to compute the shading applied to a surface it is
necessary to retrieve data about the deviation of the surface
normal from the bump map prior to applying this deviation
to the surface normal. The surface normal then has to be
renormalised in dependence on the orientation of the surface
to which it is applied. The shading calculation is then
performed.

The effect of this leads to realistic dynamic changes in
shading as a light source moves relative to the surface.
However, computationally the scheme is approximately the
same as that of Phong shading and so to date has been
restricted to non-real time applications.

SUMMARY OF THE INVENTION

We have appreciated that an effect similar to that proposed
by Blinn can be implemented with much less computational
power thus enabling realistic changes of shading to be
implemented in real time.

Preferably this is implemented in addition to the usual 3D
computer graphics rendering systems which are in common
usage for texturing and shading.

Preferably, after a surface has been rendered, the bump
map effects are applied as an additional pass over the
surface. For each image element or pixel, a bump map
texture element is obtained in a way identical to the usual
texturing operation. Lighting values are also interpolated
across the surface on a pixel by pixel basis from the light
sources in use. The lighting values for a particular pixel are
combined with the bump map texel (texture element) to
produce an alpha value and a colour and thereby look
identical to the usual output of the texturing engine. These
are then supplied to the usual blending units to apply the
texture. Unlike the approach taken by Blinn, each texel of
the bump map stores the actual direction of the surface
normal after perturbation rather than the displacements of
the surface normal. These normals are given in the surface’s
coordinate system which is preferably the polar coordinate
system. Lighting values are similarly expressed in terms
relative to the surface’s coordinate system.

The invention is defined with more precision in the
appended claims to which reference should now be made.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the invention will now be
described in detail by way of example with reference to the
accompanying drawings in which:

FIG. 1 is a block diagram of circuitry a first embodiment
of the invention;

FIG. 2 is a schematic diagram showing the surface normal
and its coordinate system; and

FIG. 3 is a block diagram of the bump map hardware of
FIG. 1.

FIG. 4 is a schematic diagram showing the surface normal
and a Cartesian coordinate representation system in contrast
with the polar coordinates of FIG. 2;

FIG. 5 shows schematically a linear filter applied to
texels.

DETAILED DESCRIPTION

As described above this invention relates to computer 3D
graphics rendering systems and is applicable but not

US 6,819,319 B1

3

restricted to hardware based rendering systems. A hardware
based system is described here by way of example. The first
embodiment of the invention shown in FIG. 1 comprises a
modified conventional 3D rendering system. Conventional
3D texture hardware 2 is used to apply texture to the image
and rending hardware 4 then shades the textured image.
Conventionally a single connection is provided between
these two hardware blocks.

In the system of FIG. 1 a store 6 is used for surface bump
map direction parameters for a number of different bump
maps. This stores a set of surface normals pointing in
different directions in dependence on their location in the
bump map. These are called up by the bump map hardware
8 which combines the lighting values for a particular pixel
with the bump map data from the store 6 to produce an alpha
value and a colour. These are identical to the usual output of
the 3D texture hardware 2 and are then supplied to the usual
blending unit which uses the alpha value to combine the
colour with existing colour at that pixel in proportions
dependent on the alpha value (alpha is between 0 and 1).

Thus, the system applies surface normal perturbation
effects to a surface as one additional single pass to modify
the existing texturing and shading. When it is determined
that, for a given surface and picture element “pixel” that a
bump map pass is required, then the appropriate surface
parameters are obtained for that surface. The surface normal
for that pixel is determined by accessing the bump map
texture associated with the surface in a similar manner to
existing texture mapping methods. A direction parameter is
also calculated for the pixel by interpolation. This is similar
to the RGB interpolation performed for Gouraud shading.
Thus the alpha value and colour value are supplied to the
blending unit.

The bump map surface normals stored in store 6 are
encoded in polar coordinate as shown in FIG. 2. Angle S
represents the elevation of the surface normal and goes from
0 to 90°. Angle R is the rotation of the surface normal and
goes from 0 to 360°. As the surface normal is a unit vector,
the length value is always 1, and so it is not required to store
this. Thus a saving on memory is achieved.

In one embodiment of the invention, the per surface
direction parameters for the lighting sources are also
encoded in spherical coordinates with parameters T ranging
from 0 to 90° and Q ranging from 0 to 360°. The dot product
power function of equation 1 would then be implemented as
shown below in equation 2.

((1-h)+h(sin(S) sin(T)+cos(S) cos(T) cos(R-Q)))*

The parameter h is a weighting value that lies in the range
0 to 1. The surface direction parameters T and Q can be
interpolated in a manner similar to that used in Gouraud
shading.

Another embodiment would include the T and H per
surface direction parameters as parameters k;, k,, k5 thus
giving the dot product power function shown below in
equation 3.

(ky+k, sin(S)+k; cos(S) cos(R-Q))”

Typically these values would be calculated as shown
below in equation 4.

ky=(1-h); ky=h sin(T); ks=h cos(T);

This gives further flexibility as well as reducing the
complexity of the implementation in hardware.

An embodiment of the invention using the equation
shown in equation 3 is illustrated in FIG. 3.

10

15

20

25

30

35

40

45

50

55

60

65

4

The elevation angle S for the surface normal is first passed
to a sine and cosine unit 10 which computes the sine and
cosine of the elevation and applies these to multipliers 12
and 14 where they are combined with lighting parameters k,
and k5. At the same time, the rotation angle R of the surface
normal has the rotation angle Q of the lighting value
subtracted from it in subtracter 16. The cosine of this angle
is then derived in cosine unit 18. The output of this unit is
unsigned and is fed to a multiplier 20 where it serves to
multiply the output of multiplier 14. The output of multiplier
12 is then passed to an adder 22 where it is added to lighting
parameter k.

The output of adder 22 and multiplier 20 are then passed
to an add/subtract unit 24. A signed bit 26 supplied by the
cosine unit 18 determines if add/subtract unit 24 adds or
subtracts the output of multiplier 20 from the output of adder
22. The output of add/subtract unit 24 is a signed 11 bit
number which is supplied to a clamping unit 28 which
reduces it to the range 0 to 255 (8 bits) and outputs this to
a power unit 30 which raises its value to a power p which is
supplied to the blend unit.

In this embodiment, the S and R values obtained from the
bump map texture are both encoded as 8 bit unsigned
numbers. For S 0 to 255 represents angles of O to almost 90°
(256 would represent 90° exactly) while for R 0 to 255
represents angles of 0 to almost 360° (256 would represent
360° exactly).

The units of FIG. 3 show the number of bits and whether
or not those integers are signed or unsigned. U, represents
an unsigned x bit integer. While S, represents a signed x bit
integer.

Thus, the alpha output to the blending unit is provided
along with a colour from the existing 3D texture hardware
2. The existing colour and the new colour are then combined
in the blending hardware 4 to produce a new value for that
particular pixel.

Using this method has several advantages. Firstly, storage
of surface normals as polar co-ordinates makes the bump
map data compact compared to the method of Blinn which
used surface normal displacements. Furthermore, renormali-
sation of the surface normals is not necessary because of the
nature of storage as surface normals. Finally, interpolation of
light direction is a relatively straight forward calculation to
be performed since in most scenes there will only be a small
number of light sources on which the lighting direction has
to be based. This enables rendering to be performed in real
time. The bump mapping technique described above has
some shortcomings. These are:

1. Interpolation of the lighting direction given at each
vertex is “tricky” as the direction is specified in polar
coordinates. Although polar coordinates allow greater pre-
cision with the direction specification and do not need
normalisation, to perform the interpolation requires signifi-
cant modification to the iterator units. Because of this, the
hardware can assume that the light direction is constant
across each polygon. This effectively eliminates Phong
shading.

2. For similar reason, bilinear texturing computations are
more complicated. Although some modifications were made
to perform angular bilinear, the actual results are not ideal.

3. The system cannot model light directions that are
‘below’ the horizon—these must be converted to an approxi-
mate direction that is on the horizon.

4. The software interface bears little resemblance to the
actual hardware interface. This means extra work for the
drivers or at least to the application.

The second embodiment described below addresses these
issues. To do this there are two major changes to the
implementation:

US 6,819,319 B1

5

1. The light direction vector is now specified in “X,Y,Z”
fixed point coordinates. This is very similar to a typical
software interface, in which the light direction vector is
given in floating point coordinates. Ideally, the floating point
vector will have been normalised.

2. The bump map texel directions are also now specified
in Cartesian coordinates, except that one component can be
eliminated due to redundancy. We thus only store “X” and
“Z” per texel.

The idea of specifying bumps and light directions in a
local vertex coordinate system remains the same. Convert-
ing a height map to the new format is much easier than the
old, since no trigonometry is required.

Additionally, the new technique includes a ‘glossiness’
parameter that allows the modelling of specular highlights.

As in the first embodiment, each texel stores the ‘angle’ or
‘surface normal’ of the bumpy surface at that particular
texel, and it is assumed that the vector can lie anywhere
within a hemisphere, as shown in FIG. 4.

We are not interested in the length of this vector (as it is
assumed to be of unit length) only in its angle. In the first
embodiment, this vector was stored using polar coordinates,
however these are a nuisance to interpolate.

In the second embodiment, the vector is represented in the
more usual Cartesian coordinate system. The obvious way to
store this would be X,Y,Z, where Y is always positive, and
X & Z are signed values, however, we are typically limited
to only 16 bits. If, however, we scale the vector such that

ey +z =1

then there is no need to store the Y component at all, since
it can be derived from the other two values. Note that this
vector is no longer of unit length. Also all components of this
vector are =1 and that the length of this scaled vector is also
=1.

Expressing this in terms of a 16 bit texel, we would have
the following:
UNIT 8 TexelX, TexelY;

TexelX=((int) (Xscaled*127.0/)+127;

TexelZ=((int) (Zscaled*127.0f))=127;

This packs X and Z as offset 8 bit values. That is, a value
of 0 represents —127/127' while 254 represents +127/127.
‘We use this notation rather than the usual 2’s complement to
make the bilinear interpolation straight-forward.

To extract the X,Y and Z components ‘in the hardware’,
wedo. ..

INT9 BumpX, BumpZ;
UINTS BumpY;

BumpX=(TexelX-127)*2;
BumpZ=(TexelZ-127)*2;
BumpY=255-ABS(BumpX)-ABS(BumpZ);
We are guaranteed that Y is positive as
(ABS(BumpX)+ABS(BumpZ))must be =255.

(The above could probably be expressed better). TexelX and
TexelZ can be the results from the linear/bilinear/trilinear
filtering.

One of the problems with the first embodiment is the
behaviour of the bilinear filtering. With angles, there is a
problem with wrapping around or taking the shortest inter-
polation path. This is eliminated with the X/Z scheme. The

10

15

20

25

30

35

40

45

50

55

60

6

interpolation is performed with just the TexelX and TexelZ
components, and the Y is calculated from the filtered result.
Since these values are in the range O to 255, the standard
RGB filtering hardware is directly applicable. For the fol-
lowing examples, only a linear ‘filter’ will be used since both
bilinear and trilinear are repeated linears.

FIG. § shows a view from above looking down on the
bump direction hemisphere. The dotted diamond shape
represents the limits of the scaled X and Z values, which
when renormalised with the computed Y value would stretch
out to the boundary of the hemisphere. Three example linear
interpolations in X and Z are shown.

For Path A, the interpolation would result in an angle that
goes up and over the pole of the hemisphere—which is ideal.
The previous method would have chosen a path that ran in
a circle ‘copying’ the circumference. For Path B, the inter-
polation would stay close to the circumference of the
hemisphere. Path C, should also result in a sensible inter-
polation with a rise and fall in the ‘Y’ component. The only
likely quibble with this scheme is that the rate of change of
the angle may not be constant, but this seems very minor.

To prevent loss of accuracy with fixed point
implementations, it is important that the length of the vector
should not decrease too greatly, since in a fixed point system,
bits will be lost. In this encoding , the minimum length
would occur when [x|=y,=|z,|="3, resulting in a length of 5.
This loses less than 2 bits of accuracy, and so is acceptable.

There are two things we must guard against. The first is
that not all possible combinations of ‘texel’ contents are
valid.

Since we have specified that |x |+y+|z =1 a texel that has
[x]+Hz>1 is clearly invalid. We must therefore, protect
against such occurrences.

The second point is that even if the original texels are
valid, there is a small chance that the bilinear unit will
produce X and Z values which also just exceed these legal
values.

As with the alternate bump format the light direction
vector is stored in Cartesian coordinates. The only space we
have available is the OffsetRGB/original-BumpK values, as
an example we may have 8 bits for each of the X, Y, and Z
components. These values all need to be signed, and to keep
accuracy, it is assumed that the light direction vector is
normalised before conversion to integer. The per-vertex
values would therefore be calculated from . . .
int8 VertX, VertY, VetZ,

VertLightX=((ixf)(LightDir(0)*127.0f)) &0xFF;
VertLightY=((inf)(LightDir(1)*127.0f))&OxFF;
VertLightZ=((int)(LightDir(2)*127.0f))&OxFF;

Since we are assuming that each vertex light vector is of
unit length and because we are using ‘linear’ interpolation,
the vector for a particular pixel will have a length thatis =1.
As with the bump map, it is important that the in-between
vectors are not too short or else too much accuracy will be
lost.

If we assume that the maximum sensible angle difference
will be 120° then the shortest vector will be sin(30°)=%5. We
will therefore only lose about 1 bit of accuracy due to the
shortening of vectors.

To have the chance of ‘smooth” animation, it is important
that small changes in light direction can be modelled. This
will be of maximum importance near where the light
direction=(0,1,0) ie. on the horizon so examining the mini-
mum integer variation that seems possible we get [2,254,0].

US 6,819,319 B1

7

This appears to be about an angle of 0.1 degrees, which
seems small enough. The shading “dot product” computa-
tion is much simpler than it is with polar coordinates and is
implemented in a well known manner.

To simulate glossy highlights, a ‘power’ function is usu-
ally applied to the dot product so that bright areas become
concentrated. The typical Phong lighting model raises the
dot product to an arbitrary power, but this is too expensive
to implement in hardware.

A cheaper, but more than satisfactory function is to use a
quadratic approximation as shown below.

Let X be the result of the dot product,

C be a ‘fixed point’ 8 bit concentration value, where C=0
(==0.0) gives a linear output, and C=255 (==1.0) gives
maximum concentration.

We compute . . .

k=C+8; (¢ is a © bit value with 3 bit of fraction)
L=MAX(0,1023-(k*(1023-X)>>3)); L is a 10 bit fractional value
O=(L*L)>>10 Q is a 10 bit fraction value

P=L+C*(Q-L)>>8;

Pis then the fixed point result of the power function. Note
that Q=L and so the final calculation will require signed
maths.
In total, the highlight function will require 5 add/subtracts
and 3 multiplies, although a couple of these are rather simple
degenerate cases.
Thus, it will be appreciated that preferred embodiments of
the present invention provide a system which enables tex-
tured surfaces to be shaded much more efficiently than has
been possible.
What is claimed is:
1. A method for shading a three dimensional textured
computer graphic image comprising the steps of:
providing data defining the three dimensional computer
graphic image, the image comprising a set of pixels;

providing a set of surface normal vectors corresponding to
texture data for the image, wherein the surface normal
vectors are stored in a local two dimensional coordinate
system, and an individual surface normal vector from
the set of surface normal vectors is assigned to each
pixel;

providing data defining at least one light source and its

direction illuminating the image wherein the light
source is defined in the same local coordinate system;
and

for each pixel in the image, deriving a shading value to be

applied to that pixel from the surface normal vector
assigned to the pixel and the light source data.

2. A method according to claim 1 in which the surface
normal vectors are stored in polar coordinates.

3. Amethod according to claim 1 in which the light source
data are stored in polar coordinates.

4. A method according to claim 1 in which the step of
deriving a shading value to be applied to a pixel comprises
deriving a colour value and a blending value from the
surface normal vector assigned to the pixel and the light
source data and combining the derived colour value with
existing colour data for that pixel in dependence on the
blending value.

5. A method according to claim 1 in which the surface
normal vectors are stored in Cartesian coordinates.

6. A method according to claim 5 in which the light source
data are stored in Cartesian coordinates.

10

15

20

25

30

35

40

45

50

55

60

65

8

7. A method according to claim 5 in which, for each
surface normal vector, only two of the Cartesian coordinates
are stored.

8. A method according to claim 1 comprising the step of
applying a linear filter to the texture data at least once to map
values to the individual pixels.

9. A method according to claim 1 including the step of
applying a glossiness parameter to a pixel.

10. Apparatus for shading a three dimensional textured
computer graphic image comprising:

means for providing data defining the three dimensional

computer graphic image, the data defining pixels that
comprise the image;

means for providing a set of surface normal vectors

corresponding to texture data applied to the image,
wherein the surface normal vectors are stored in a local
two dimensional coordinate system;

means for providing data defining at least one light source

and its direction illuminating the image wherein the
direction of the light source is provided in the same
local coordinate system; and

means for deriving a shading value to be applied to each

pixel in the image from the set of surface normal
vectors and the light source data.
11. Apparatus according to claim 10, wherein said means
for providing surface normal vectors provides the surface
normal vectors in polar coordinates.
12. Apparatus according to claim 10, wherein said means
for providing light source defining data provides the light
source data in polar coordinates.
13. Apparatus according to claim 10, wherein said means
for providing surface normal vectors provides the surface
normal vectors in Cartesian coordinates.
14. Apparatus according to claim 10, wherein said means
for providing light source defining data provides the light
source data in Cartesian coordinates.
15. Apparatus according to claim 13, wherein said means
for providing surface normal vectors, for each surface nor-
mal vector, provides only two of the Cartesian coordinates.
16. Apparatus according to claim 10 comprising means
for applying a linear filter at least once to the texture data to
map values onto individual pixels.
17. Apparatus according to claim 10 in which said means
for deriving a shading value to be applied to a pixel
comprises means for deriving a colour value and a blending
value from the light source data and means for combining
the colour value with an existing colour value in dependence
on the blending value.
18. A method of shading a three dimensional graphics
textured image comprising the steps of:
defining a basic computer image to be textured, the
computer image comprising a set of pixels, wherein, in
said step of defining a basic computer image, an
existing color value for each pixel is determined;

determining whether or not the basic computer image is to
be subjected to supplemental shading;

if the basic computer image is to be subjected to supple-

mental shading:

for each pixel in the basic computer image, providing
a surface normal vector, wherein the surface normal
vectors are in a local two dimensional coordinate
system,

providing data defining a light source and the direction
from which the light source illuminates the basic
computer image, wherein the data are in the same
local coordinate system as the surface normal vec-
tors;

US 6,819,319 B1

9

based on the surface normal vector for a pixel and the
data defining the light source and the direction from
which the light source illuminates the basic computer
image, generating an alpha value and a supplemental
color value for the pixel; and

blending the existing color value and the supplemental
color value together as function of the alpha value to
produce a final color value for the pixel; and

if the basic computer image is not to be subjected to
supplemental shading, designating the existing color
value as the final color value.

19. The method of shading a three dimensional graphics

textured image of claim 18, wherein:

a store contains a plurality of bump maps, each said bump
map comprising a set of surface normal vectors; the
surface normal vectors of a bump map varying as a
function of the location of the surface normal vectors
on the bump map;

10

15

10

if the basis computer image is to be subjected to supple-
mental shading, one of the bump maps in the store is
retrieved and the bump map is mapped over the basic
computer image; and

said step of providing a surface normal vector for a pixel

is performed by determining which of the bump
mapped surface normal vectors is mapped over the
pixel.

20. The method of shading a three dimensional graphics
textured image of claim 18, wherein said step of providing
a surface normal vector for a pixel is performed by retrieving
the surface normal vector from a store wherein, in the store,
the surface normal vector is stored in one from the following
set of coordinate systems: polar coordinate system and
Cartesian coordinate system.

